
@-

NASA Contractor Report 191470

ICASE Report No. 93-24

l w-Uol

/- is

IC S 2O
Years of

Excellence

MAPPING ROBUST PARALLEL MULTIGRID ALGORITHMS

TO SCALABLE MEMORY ARCHITECTURES •

(NASA-CR-191470) MAPPING ROBUST

PARALLEL MULTIGRID ALGORITHMS TO

SCALABLE MEMORY ARCHITECTURES Final

Report (ICASF) 15 p

Andrea Overman

John Van Rosendale

N93-32359

Unclas

G3/61 0179674

NASA Contact Nos. NAS1-19480, NAS1-18605

June 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-000i



|

ml

i
i



MAPPING ROBUST PARALLEL MULTIGRID ALGORITHMS TO

SCALABLE MEMORY ARCHITECTURES 1

Andrea Overman

NASA Langley Research Center

Hampton, VA 23681-0001

John Van Rosendale

ICASE

NASA Langley Research Center

Hampton, VA 23681-0001

ABSTRACT

The convergence rate of standard multigrid algorithms degenerates on problems with

stretched grids or anisotropic operators. The usual cure for this is the use of line or plane

relaxation. However, multigrid algorithms based on line and plane relaxation have limited and

awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer

multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than

line relaxation are better suited to massively parallel architectures because they require only simple

point-relaxation smoothers.

In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid

(MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon

computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation

or interpolation on each grid and across tlle grids on each multigrid level. Both levels of parallelism

must be exploited to map these algorithms effectively to parallel architectures. This paper describes

a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both

levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for

distributed-memory machines.

1This research was supported by the National Aeronautics and Space Administration under NASA contract nos.
NAS1-19480 and NAS1-18605 while the second author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.



|



INTRODUCTION

The convergence rate of standard multigrid algorithms degenerates on problems that have

anisotropic discrete operators. Such operators arise when the continuous operator is anisotropic or

when the discretization is based on highly stretched grids. Although a number of effective cures

exist for this difficulty, the best sequential algorithms (based on line or plane relaxation) do not

appear to be viable on emerging, massively parallel architectures. Thus, newer algorithms, which

achieve robustness through the use of multiple coarse grids rather than line or plane relaxation and

require only point-relaxation smoothers, are an attractive alternative.

The problems with line- and plane-relaxation algorithms on parallel architectures have only

recently become apparent. Although the tridiagonal systems involved can be solved in parallel by

substructured elimination, for example, this approach approximately doubles their computational

cost. In addition, a more subtle difficulty exists. The fastest robust sequential algorithms combine

line- and plane-relaxation algorithms with semicoarsening. Unfortunately, this means that the size

of the line and plane solutions required on coarse grids is the same as on the fine grid. For example,

an n2-point grid in two dimensions with a parallel tridiagonal solver and O(n 2) processors gives a

theoretical upper bound on parallel efficiency of only O(1/log 2 n). Thus, the fact that parallel

implementations of such algorithms have proven problematic is not surprising (refs. 1,2,3).

An alternate approach to robustness, based on using multiple grids on every coarse multigrid

level, is newer and relatively untried. Through the use of appropriate coarse grids, one can obtain

point-relaxation algorithms as robust as line- and plane-relaxation algorithms (refs. 4,5,6,7).

However, because of the large number of coarse grids required, these algorithms are not quite

competitive with line- and plane-relaxation algorithms on sequential machines. On parallel

architectures, the opposite is true (refs. 5,8,9) because the increased parallelism due to the multiple

coarse grids is an attractive bonus. In particular, Douglas' method is robust and can be mapped

effectively to parallel architectures (ref. 5); Horton (ref. 9) has looked recently at the mapping of

Hackbusch's Frequency Decomposition method (ref. 6) to parallel architectures.

In this paper, we study the mapping of the multiple semicoarsened grid (MSG) algorithm, a

variant of Mulder's multiple coarse-grid algorithm (ref. 10), to highly parallel architectures. The

MSG algorithm (ref. 7) is relatively robust and at the same time provides ample parallelism for

current parallel architectures. We take as our model problem the symmetric, positive-definite

Helmholtz equation

au_ + bu_ + cu_ - du = f

with a, b, c, d > 0 and focus on the mapping issues involved in implementing this algorithm on

distributed-memory architectures such as the Intel iPSC/860 and Paragon.

This paper is organized as follows. We begin with a description of the MSG algorithm in the

next section, which is followed by a discussion of observed convergence rates. Our parallel

implementation is then described. We present the experimental results, and, finally, conclusions are

given.



ALGORITHM DESIGN

J

We first need to describe the MSG algorithm. For notational simplicity, assume that the

domain of the model problem is the unit square in two dimensions and that this problem is to be

solved on an n x n uniform grid as

ah= {(ih, jh) [ i=0,1,...,n; j=0,1,...,n}

with h = 1/n. Define the coarser grids YZz'r_, which are obtained by successive semicoarsening of fZh

l times in the z-direction and m times in the y-direction. Thus, f_z,m has (n + 1)/2 t grid points in

the z-direction and (n + 1)/2 TM grid points in the y-dlrection.

Notice that the notation does not distinguish between a grid obtained by semicoarsening first

in the y-direction and then in the z-direction and a grid obtained by semicoarsening first in the

z-direction and then in the y-direction. Either path leads to a grid of the same shape and size. As

shown by Mulder (ref. 10), su& equivalent grids must be combined in order to construct reasonable

algorithms in three or more dimensions.

Figure 1 shows the interrelations between the various grids for a two-dimensional problem

with an 8 x 8 fine grid. With coarse grids combined as in this diagram, for a 16 x 16 probIem one

would have only 16 grids altogether; without combining, the full binary tree of grids would contain

69 grids.

level 1

/ \
I
L__

L
/ \ / \

level 2

level 3 ,

\ / \ /

level 4

\ /

level 5

i

Figure 1. Semicoarsening of an 8 x 8 grid.

i

|

| ;

Given this family of grids, one can construct a V-cycle correction scheme analogous to the

standard full-coarsening multigrid algorithm. One-dimensional linear interpolation provides a

2



natural prolongation operator; its adjoint gives the "full weighting" restriction operator'. These

choices, together with any reasonable smoother, yield a multigrid algorithm. However, the resulting

algorithm is not robust.

The problem with this simple correction scheme is explained. If the prolongation is scaled so

that the full correction is obtained from the modes that are oscillatory in x but not y and

conversely, then the result is double the required correction of the smoothest components that

belong to both coarse grids, and divergence results. On the other hand, if the prolongation is scaled

to get the proper correction of the smooth components, then some of the oscillatory components £re

undercorrected, and robustness is lost.

The resolution of this problem is to filter either the residuals that are being restricted or the

corrections that are being prolonged to achieve a convergent V-cycle for the model problem

= f

where the convergence rate is independent of a, b > 0. This filtering can be performed in several

ways.

Let v l''n denote the correction on grid g/t,m. Also let R_ and Ru denote restriction in the x-

and y-directions, and, similarly, let Px and Py denote prolongations. The first effective solution to

this problem was given by Mulder (ref. 10). Mulder forms the fine-grid correction

v1'° + v°'1

given solutions v 0,1 and vl'° on the second level and similar solutions for coarser levels. One can

think of the operator P_:R, here as a high-pass filter that filters out the excess correction for the

smooth modes common to both coarse grids.

In recent work, Naik and Van Rosendale have been looking at the analogous scheme with the
correction

(1 + 1/2 P_Ru)P:_ v ''° + (1 + 1/2 P,R,)P, v °'_

which can be thought of as a symmetric version of Mulder's scheme. A V-cycle proof for one variant

of this scheme appears to be possible.

A third way of making the correction is to compute a scalar-valued function a(x, y), which

depends on the strength of the discrete differential operator in each coordinate direction. Then,

with a properly choosen c_, one uses the correction

a(x,y)P_ v _'° W [1- a(x,y)]Py v °'1

A V-cycle convergence proof for this scheme, at least for constant coefficient problems, was given in

ref. 7. This reference also provides details on the computation of a(x, y).

On sequential machines, any of these schemes is effective and robust. Mulder's scheme and its

symmetrized version eliminate the necessity of choosing a; the extra work involved in their

interpolations is trivial. However, because the communication required for interpolation is awkward

f



and expensive on parallel architectures, we used the alpha-switch algorithm here, which reduces the

complexity of the interpolations. It is as robust as the alternatives and simpler to implement.

Generalization of this alpha-switch algorithm to the three dimensions is straightforward.

Instead of simply computing oL(x, y), one computes c_(x, y, z) and/3(x, y, z) and then uses the three

weights

o_(x,y,z) /3(x,y,z) 1 - e_(x,y,z) - 13(x,y,z)

From the point of view of parallel architectures, computation of the switching factors a and/3 is

analogous to a Jacobi sweep, which needs to be done only once at the beginning of the computation.

OBSERVED CONVERGENCE RATES

Experimentally, the MSG algorithm converges extremely well for the model problem

au_ + buu_ + cuzz - du = f

where the convergence rate is independent of a, b, c, d > Oand uniform mesh size. Alternatively,

MSG can be used for stretched grids, as shown in Table 1. The results given are Qbserved :

convergence rates for PoissOnhs equation with=Dirichiet boundary conditions and a random initial

guess. Slow variation _n the coefficients a; bI cor in mesh Spac]nghave a similar impac't on

convergence. The Helmholtz term d > 0 can improve convergence on coarse grids, but is largely

irrelevant. All of the above information applies only to problems with smooth coefficients. Special

algorit_hm s are required for Problems with severe coefficient jumps (refs. 11,3). The discretlzation

used throughout our experiments was a symmetric seven-point finite-difference stencil, with the

smoothing done by three red-black successive over-relaxation (SOR) sweeps on every grid.

The problem with this algorithm on sequential machines is the large number of grids required

_: and the resulting high cost per V'cycle. With the usual coarsening by a factor of 2 (as shown in

! Table 1)i the total storagefor-all grids in three dimensions is eight times that of the finest grid.

i

Thus, the Work per V-cycle is also eight times the work on the finest grid, which does not include

the cost of the interpolations.

A more attractive sequential algorithm can be made by changing the coarsening factor. In any

semicoarse_ing algorithm, one has fewer Fourier modes to reduce than in full-coarsening algorithms;

thus, one can afford to coarsen the grids faster.

If we use coarsening by a factor of 4, for example 1, then the total storage becomes

(1 + 1/4 + 1/16 + ...)3 = 64/27

times that on the finest grid. Thus, the total work is about 2½ times that on the finest grid.

1The red-black SOR smoother used yields poor convergence rates for odd coarsening factors. Thus, the reasonable

choices for the coarsening factor are 2 and 4 because either 6 or 8 would make the space of "oscillatory" functions
(which must be effectively reduced by the smoother) too large.



Table 1. ConvergenceRatesof MSG on VariousGrids With Factor-of-2Coarsening

Uniform Grids
dx = 1000, dy=dz=l

dx = 10, dy = dz = l

dx = 0.1, dy = dz = l

dx =0.001, dy = dz = 1

8x8x8 16 x 16 x 16

0.04

0.04

0.02

0.03

0.06

0.06

0.05

0.07

Chebyshev Grids

Chebyshev in x

Chebyshev in x, y

Chebyshev in x, y, z

0.04

0.04

0.03

0.06

0.04

0.04

32 × 32 x 32

0.07

0.08

0.07

0.08

0.11

0.12

0.15

Table 2 gives the observed convergence rates for the same problems as in Table 1; however,

factor-of-4 coarsening was used. Although the convergence rates in Table 2 are poorer than in Table

1, the reduced computational cost per V-cycle more than compensates for this. Three V-cycles of

the algorithm can be accomplished with factor-of-4 coarsening for less than the cost of one V-cycle

with a factor-of-2 coarsening. With the 323 grid, because 0.33 = 0.027, the three V-cycles with a

factor-of-4 coarsening are more effective than one V-cycle with a factor-of-2 coarsening.

Massively parallel architectures that have hundreds or thousands of processors might change

these considerations and increase the effectiveness of the algorithm with a factor-of-2 coarsening

because it provides more parallelism on coarse grids. However, because the algorithm with a

factor-of-4 coarsening seemed to provide ample parallelism and the memory per processor is limited

on the Intel iPSC/860, we used a factor-of-4 coarsening in our code.

In addition to the use of a factor-of-2 coarsening, the parallelism can be further increased by

use of concurrent iteration on all grid levels (refs. 12,13). This form of MSG is particularly

attractive on SIMD machines, where the mapping strategies needed for the V-cycle algorithm are

prohibitively complex. In joint research with J. Dendy, this alternative is currently being explored

for problems with severe coefficient jumps. However, while the concurrent iteration version of MSG

maps very nicely to SIMD machines (ref. 7), its convergence rate is in the range of 0.5-0.6, even

with a factor-of-2 coarsening. Thus, one trades numerical performance for massive parallelism.

5



Table 2. ConvergenceRatesof MSG on Various Grids With Factor-of-4 Coarsening

Uniform Grids

dx = 1000, dy=dz=l

dx = 10, dy = dz = l

dx = 0.1, dy = dz = 1

dx =0.001, dy = dz = 1

Chebyshev Grids

Chebyshev in x

Chebyshev in x, y

Chebyshev in x, y, z

8x8x8

0.21

0.21

0.11

0.11

0.19

0.I1

0.05

16 x 16 x 16

0.20

0.20

0.13

0.15

0.18

0.14

0.19

32 x 32 x 32

0.23

0.24

0.18

0.14

0.26

0.25

0.26

I
J

MAPPING MSG TO SCALABLE ARCHITECTURES

r The V-cycle MSG algorithm achieves fast convergence and contains substantial parallelism,

although exploitation of this parallelism is fairly awkward. This awkwardness is in contrast to the

standard (full-coarsening) multigrid, where parallel implementation is straightforward. For the

MSG case, we designed a program to compute efficient mappings of the algorithm to a

distributed-memory architecture. The computed mappings were then implemented with the

PARTI 2 runtime primitives developed at ICASE (refs. 14,15). Although this implementation was

complex, without PARTI or analogous tools, implementation would have been prohibitively

difficult. In this section, we describe our implementation strategy.

Load Balancing

Twobasic {ssues must be addressed in mapping the V-cycle MSG algorithm to

distributed-memory architectures: processors must be assigned to the grids on each level and each

gri d ml{st b-epar-tit_oned across the processors assigned to it. Because a large number of possible

mapping strategies exist, we made two major simplifying choices. First, we chose to map each

multigrid level independently of the mapping of all other levels. Second, if the number of processors

was greater than the number of grids on a level, we chose to assign each processor to, at most, one

2PARTI is an acronym for Parallel Automated Runtime Toolkit at ICASE.

6



grid on that level.

The first assumptionis justified by the observationthat the smoothing iteration is more
frequent and morecomputationally intensivethan the interpolation, so that the achievementof a
good mapping during the smoothingstepis crucial to performance.Also, any mapping that
achievesan approximateload balanceduring the smoothingstep is bound to induce a large amount
of communicationduring interpolation. Onereasonfor this is that the number of grids on eachlevel
almost alwaysdiffers from the number on neighboringlevels;thus, no mapping exists that
simultaneouslyminimizescommunicationand achievesload balance.

The secondassumptionthat eachprocessoris assignedto no more than onegrid on every level
was taken to minimize communication,although it doesinducesomeload imbalance. For example,
supposeonehas threegrids on a level to be split over eight processors.Then eachgrid would ideally
receive2.66processors.However,sucha mapping is complexand clearly increasescommunication.
Instead, onegrid would be assignedto two processors,and the other two grids to three each.

In the current implementation,we did not split processorsacrossgrids. Instead, wecarefully
determined thosegrids that shouldget fewerand those that shouldget moreprocessorsto achieve
approximateload balancewithout splitting processorsacrossgrids. In general,long thin grids (grids
with onearray dimensionmuchsmaller than the others) induce lesscommunicationwhen split over
multiple processorsthan fat grids (grids with all array dimensionsabout equal). Thus, one

maximizes load balance by assigning excess processors to the fattest grids.

Given these preliminaries, our load balancing algorithm follows. By assuming one has p

processors and more processors than grids on all multigrid levels, the algorithm for distributing

processors to grids is

Assign p processors to the finest grid

For level := 2 to max_level {

ngrids := number_of_grids(level)

assign [p/ngrids] processors to each grid

p_excess := p- ngrids [p/ngridsj

assign one more processor to each of the p_excess fattest grids

We call this the maximally distributed strategy.

This algorithm gives a distribution of processors to grids. Afterwards, one still has to partition

each grid across the processors. To do this, we blocked the finest grid across processors in all three

directions; coarser grids were blocked in one direction. One reason for this choice is that coarser

grids often have an odd or prime number of processors, so that partitioning in more than one

direction can be quite awkward. In all cases, the direction in which the coarser grids were blocked

was chosen to minimize interprocessor communication.

In an alternate implementation referred to as the aligned strategy, all coarse grids were aligned

to the finest grid, which requires each coarse grid to be partitioned among the full set of processors.

7



Although this strategy will eliminate communicationduring the interpolation, it leadsto increased
communicationwithin a singlegrid and may quickly lead to idle processors.In the future, a
strategy that usesa combinationof the two describedabovemay be implemented. In this hybrid

implementation, coarse grids would be aligned in the first few levels; on lower levels, individual grids

would be assigned to only a subset of processors.

PARTI Implementation

As stated, the MSG algorithm was implemented in parallel with the multiblock PARTI

routines. The multiblock library was designed to support block-structured aerodynamics codes in

which one uses multiple, logically rectangular grid blocks to resolve complex aerodynamic

geometries (ref. 16). Because the structure of such codes is fairly similar to that of MSG, we found

that the same routines could be effectively used to implement this algorithm.

The PARTI library for block-structured codes allows multiple grid blocks to be processed in

parallel and carries out the necessary communication required to move information among the grids.

In our parallel implementation thai maps coarse grids to subsets of processors, an individual

"decomposition" is defined for the fine grid and for each coarser grid. In order to have all processors

active on the finest grid, the fine-grld decomposition is embedded into the entire processor space.

Then, for each subsequent level, the coarse-grid decompositions are embedded into an

approximately equal portion of the processor space, as described in the last section. The single

coarse grid on the coarsest level contains few points so it is mapped to one physical processor.

Our parallel version reads a rilethat holds the grid mapping and distribution information. A

subroutine was created to use this mapping information along with the appropriate PARTI routines

to set up the problem. As in most multigrid codes, the sequential code uses several large arrays to

hold the residual, solution, and right-hand-side data for all grids on all levels. Individual grid sizes

and starting index locations into the large arrays are computed and passed as parameters to

subroutines. This strategy was maintained in the parallel version; however, the sizes and starting

locations were modified to reflect the parallelism and the additional space required for holding

boundary data for those grids distributed over more than one processor.

While PARTI aims to require minimal changes

implementation was 20 to 25 percent larger than the

subroutines required an extensive rewrite. Emerging

FORTRAN, FORTRAN D, and Vienna FORTRAN,

to the sequential source program, our parallel

original sequential program, and some

FORTRAN dialects, like High Performance

may soon ease this programming burden.

However, the current versions of these languages are not expressive enough to allow mapping

strategies as complex as those described in this paper. The improvement of such languages, and of

software tools like PARTI, is an area of active research at ICASE and elsewhere. The present

situation, in which the effective mapping of an algorithm to a parallel architecture is an arduous

task of many months, is clearly unacceptable.



EXPERIMENTAL RESULTS

We recently implementedthis algorithm and the mapping strategy on a 32-nodeIntel
iPSC/860 and will soonmigrate this programto a 64-nodeIntel Paragonand possiblya CM-5. The
current results arepreliminary, but aresufficiently encouragingto suggestthe relative efficacyof this
classof algorithms. For a problemwith 163meshcells, the achievedefficienciesaregiven in Table 3.

Table 3. Efficiency of Problem With 16a-Point Grid on iPSC/860

Processors

Efficiency

1 2 4 8 16

1.0 .83 .66 .42 .25

Table 4. MSG Performance on the Intel iPSC/860

Size Nodes

163

323

643

1

2

4

8

16

4

8

16

32

Total Time

(secs)
6.96

4.21

2.63

2.07

1.71

22.6

13.5

8.39

5.27

16 49.5

32 24.1

V-cycle Time, (secs)

First V-cycle

3.07

1.70

1.05

.925

.793

11.6

7.15

4.59

2.61

Subsequent V-cycles

1.22

.804

.508

.373

.302

3.55

2.03

1.23

.867

28.8 6.63

12.1 3.87

These efficiencies were computed relative to the parallel implementation run on one node. A

large amount of overhead can be incurred with the runtime software. For the 16z problem, the

parallel code run on one processor takes approximately four times longer than the sequential code

that contains no PARTI calls. For larger problems, the overhead should become less significant.

Another issue here is the choice of stencil. With the 7-point stencils used, the

communication/computation ratio is four times greater than for 27-point stencils, and our

efficiencies are correspondingly lower. However, the PARTI library does not currently update the

corner ghost points needed for the 27-point stencils, so we were restricted to the use of 7-point

stencils. This restriction will be changed in the next release of the library.



50

40 643

30
g
• 2o

i 2 3 4 5 6

Log # processors

Figure 2. Execution time versus number of processors.

Table 4 shows performance results for several problem sizes. The table contains the overall

program timings, along with the timings for each V-cycle. The results show the extra time required

in the first V-cycle for setting up the communication schedules. These schedules are saved and,

therefore, do not need to be recomputed on subsequent iterations.

Figure 2 expands on the data in Table 4. The graph shows that the 323 problem run on 4

nodes requires approximately the same amount of time as the 643 problem run on 32 nodes. This

result is to be expected because the 643 problem has about eight times as much work. In Figure 2, a

horizontal connecting line between the two cases (the dashed line on the graph) would indicate the

achievement of perfect memory-bounded speedup (ref. 17); however, because of various overheads,

this line slopes slightly.

The number of cases plotted here was constrained by current limitations of the PARTI library.

For example, we were unable to obtain any timings on the machine that used more than 32

processors. Also, because of the large amount of memory consumed by the PARTI communication

library, the user memory available on each processor decreased. These problems should be resolved

in future releases of the PARTI library. The multiblock library is in a preliminary stage. We expect

that further optimizations will improve the performance of block-structured codes with the

multiblock library. The performance effects of some optimizations made to the PARTI primitives

used in unstructured codes are described in ref. 18.

Alternate Mapping Strategies

We have also experimented with the aligned mapping strategy that was described briefly in

10



lhe previoussection. With this strategy, the cost of the first V-cycle is much lower than in the
maximally distributed strategy because the communication that occurs in the interpolation is easier

to analyze. However, subsequent V-cycles are more expensive than in the maximally distributed

strategy. This difference seems to be due both to the increased communication within each grid

(because each grid is subdivided more finely) and to the sequentialization of all grids on every level.

As a result, the aligned strategy is less effective than the maximally distributed strategy, even

though it reduces interprocessor communication during the interpolation. 3 In future work, we plan

to study various hybrid strategies like those proposed in ref. 9 that combine the advantages of both

the aligned and maximally distributed strategies.

CONCLUSIONS

We have examined the parallel implementation of a multigrid algorithm based on multiple

coarse grids. Such multigrid algorithms have a fast convergence that is independent of grid

stretching and can be effectively mapped to highly parallel architectures. We have developed a

strategy for mapping such algorithms to parallel machines and have given preliminary results on the

effectiveness of this strategy in mapping MSG to the Intel iPSC/860. The PARTI library is being

ported to the Intel Paragon; we plan to try our algorithms on this larger machine in the near future.

ACKNOWLEDGMENTS

The authors wish to thank Alan Sussman for making the library available to us while it has

been under development and for frequent consultations on the use of the multiblock PARTI

routines. We also wish to acknowledge discussions on parallel multigrid issues with Joe Dendy,

Naomi Naik, and Graham Horton.

REFERENCES

1. Dendy, J. E., Jr.; Ida, M. P.; and Rutledge J. M.: A Semicoarsening Multigrid Algorithm for

SIMD Machines. SIAM J. Sci. Star. Comput., vol. 13, no. 6, Nov. 1992, pp. 1460-1469.

2. Overman, A.; and Van Rosendale, J.: Mapping Implicit Spectral Methods to Distributed

Memory Architectures. ICASE Report 91-52, June 1991.

3. Smith, R. A.; and Weiser, A.: Semicoarsening Multigrid on a Hypercube. SlAM J. Sci. Stat.

Comput., vol. 13, no. 6, Nov. 1992, pp. 1314-1329.

3A problem also exists with using the PARTI library for the aligned strategy. Currently, PARTI does not handle
cases in which the decomposition of a coarse grid across processors results in a processor that receives no mesh points,

a case that frequently arises with this strategy. Future versions of the PARTI library may eliminate this restriction.

ll



4. Ta'asan,S.; and Brandt, A.: Multigrid Solutionsto Quasi-Elliptic Schemes.In Progress in

Supercomputing in Computational Fluid Dynamics. E. Murman and S. Abarbanel, eds.,

Procee;dings of the U.S.-Israel Workshop, 1984, pp. 235-255.

5. Douglas, C. C.: A Tupleware Approach to Domain Decomposition Dethods. Appl. Numer.

Math., 8, 1991, pp. 353-373.

6. Hackbusch, W.: The Frequency Decomposition Multigrid Method, Part I: Application to

Anlsotropic Equations. Numer. Math., 56, 1989, pp. 229-245.

7. Nalk N.; and Van Rosendale, J.: The Improved Robustness of Multigrid Elliptic Solvers Based

on Multiple Semicoarsened Grids. SIAM J. Numer. Anal., vol. 30, no. 1, Feb. 1993, pp.

215-229.

8. Frederickson, P.; and McBryan, O.: Parallel Superconvergent Multigrid. In MuItigrid Methods:

Theory, Applications, and Supereomputing. S. F. McCormick, ed., Marcel Dekker, New York,

1988, pp. 195-210.

9. Bastian, P.; and G. Horton, G.: Para!lelization of Robust Multigrid Methods: ILU

Factorization and Frequency Decomposition Method. SIAM J. Sci. Star. Comput., vol. 12,

no. 6, Nov. 1991, pp. 1457-1470.

10. Mulder, W.: A New Multigrid Approach to Convection Problems. J. Comp. Phys., vol. 83,

1989, pp. 303-329.

11. Alcouffe, R. E.; Bran&, A.; Dendy, J. E. Jr.; and Painter, J. W.: The Multi-Grld Method for

the Diffusion Equation with Strongly Discontinuous Coefficients. SIAM J. Sci. Star. Comput.,

vol. 2, 1981, pp. 430-454.

12. Gannon, D.; an d Van Rosenda!e, J.: Highly Parallel Mult_grid Solvers for Elliptic PDE's: An

Experimental Analysis. ICASE Report 82-36, 1982.

13. Gannon, D.; and Van Rosendale, J.: On the Structure of Parallelism in a Highly Concurrent

PDE Solver. J. Parallel and Distributed Comp., vol. 3, 1986, pp. 106-135.

14. Sussman, A.; Saltz, J.; Das, R.; Gupta, S.; Mavrlplis, D.; Ponnusamy, R.; and Crowley, K.:

PARTI Primitives for Unstructured and Block Structured Problems. Computing Systems in

Engineering, vol. 3, no. 1-4, 1992, pp. 73-86.

15. Chase, C.; Crowley, K.; Saltz, J.; and Reeves, A.: Parallelization of Irregularly Coupled

Regular Meshes. ICASE Report 92-1, Jan. 1992.

16. Vatsa, V.; Sanetrik, M.; and Parlette, E.: Development of a Flexible and Efficient

Multigrid-Based Multiblock Flow Solver. AIAA Paper 93-0677, Jan. 1993.

17. Gustafson, J.; Montry, G.; and Benner, R.: Development of Parallel Methods for a

1024-Processor Hypercube. SIAM J. Sci. Star. Comput., vol. 9, 1988.

18. Das, R.; Mavriplis, D. J.; Saltz, J.; and Gupta, S.: The Design and Implementation of a

Parallel Unstructured Euter Solver Using Software Primitives. AIAA Paper 92-0562, Jan.

1992.

12



Form Approved
REPORT DOCUMENTATION PAGE OMa_o oTo4-o;as

im i i i i i

Public reportcng burden for this collection of informatlonjs esbmated to average 1 hour per response, including the time for reviewing instructions, searchlflg exrstlng data source-.,

gathenng and mainta!ninc _ the data needed: and com!_etmg and reviewing the col3ection of mforrnat=on Send cornmen_s regarding this burden estimate or any other aspect of this
collection of informatlOfl, mcl_::hng sucjgestlons for reducing th;s burden, to Washington HeadQuarters _rwces, Directorate for Information Operations and Reports, 1215 Jefferson
C)aws Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1993 Contracto !
4. TITLE AND SUBTITLE

MAPPING ROBUST PARALLEL MULTIGRiD ALGORITHMS TO SCALABLE

MEMORY ARCHITECTURES

6. AUTHOR(S)

Andrea Overman

John Van Rosendale

7. PE_ORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mall Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

g. SPONSORING/MONiTORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

3. REPORT TYPE AND DATES COVERED

Report
s. FUNDING NUMBERS

C NAS1-19480

C NASI-18605

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93-24

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-191470

ICASE Report No. 93-4

11. SUPPLEMENTARY NOTES
Langley Technical Monitor:

Final Report

Michael F. Card

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61, 64

To appear in the Proc. of the

Copper Mountain Multigrld

Conference

12b. DISTRIBUTION CODE

13.ABSTRACT (Maximum2OOworO_) The convergence rate of standard multlgrld'algorlthms degen-

erates on problems with stretched grids or anlsotroplc operators. The usual cure for

this is the use of llne or plane relaxation. However, multlgrld algorithms based on

llne and plane relaxation have limited and awkward parallelism and are quite difficult

to map effectively to highly parallel architectures. Newer multlgrld algorithms that

overcome anisotropy through the use of multiple coarse grids rather than line relaxa-

tion are better suited to massively parallel architectures because they requlre only

simple polnt-relaxatlon smoothers.

In this paper, we look at the parallel implementation of a V-cycle multiple semi-

coarsened grid (MSG) algorithm on dlstrlbuted-memory architectures such as the Intel

iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism:

parallelism within the relaxation or interpolation on each grid and across the grids

on each multlgrid level. Both levels of parallelism mustbe exploited to map these

algorithms effectively to pa_allel architectures. This paper describes a mapping of

an MSG algorithm to dlstrlbuted-memory architectures that demonstrates how both levels

of parallelism can be exploited. The result is a robust and effective multlgrld al-

gorithm for dlstrlbuted-memory machines.

14. SU_ECT TERMS

parallel multigrld; robust multlgrld

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

14

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pt'e_ribed by ANSI Std Z39-18
_JII- I02

"_U.8. GOVERNMENT PRINTING OFIFICE: le93 - 7Z8-064/86023




